Affiliation:
1. School of Mechanical Engineering. Beijing Institute of Technology, Beijing, China
2. Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, Beijing, China
Abstract
Composite workpieces, especially the complex-curved surfaces composite workpieces, have been increasingly used in different industries. Non-destructive testing of these parts has become an urgent problem to be addressed. To solve the problem, this article presents a dual-robot air-coupled ultrasonic non-destructive testing scheme and introduces the structure of the system and a general calibration method for the workpiece frame of a dual-robot system in detail. Importantly, this article proposes a tangential constraint method, which makes the probes completely aligned during the inspection process. Verification experiments and ultrasonic testing experiments for a glued multilayered composite workpiece were performed using the dual-robot air-coupled ultrasonic non-destructive testing system. A comparative experiment was also performed using a dual-robot water jet-coupling ultrasonic testing system. Experimental results show that the dual-robot non-destructive testing scheme and the tangential constraint method function well, and all the artificial defects on the sample can be detected by both kinds of testing methods. Vivid 3-D C-scan image based on the test result is provided for convenience of observation. In other words, a kind of flexible versatile testing platform with multiple degrees of freedom is established.
Funder
National Natural Science Foundation of China
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献