Affiliation:
1. School of Electrical and Electronic Engineering, University of Manchester, Manchester, UK
Abstract
Advanced motions, which utilize footholds on walls, offer considerably more opportunities for hexapods in accessing confined environment. However, there has been no research on the practical application of such motions on a hexapod. These motions are kinematically viable for the standard hexapod design with three degrees of freedom per leg but the joint requirements have yet to be identified. This article presents the motion analysis for two forms of advanced motion, wall walking and chimney walking, to study the joint requirement for executing such motions. The analysis has been verified through a series of experiments demonstrating that a hexapod with a standard design is capable of executing advanced motions.
Funder
Engineering and Physical Sciences Research Council
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献