A new novel six-degree of freedom two-link manipulator using active magnetic bearing: Design, kinematics, and control

Author:

Selmy Mohamed1ORCID,Fanni Mohamed1,Mohamed Abdelfatah M1,Miyashita Tomoyuki2

Affiliation:

1. School of Creative Science and Engineering, Egypt-Japan University of Science and Technology, Alexandria, Egypt

2. Graduate School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo, Japan

Abstract

Due to the absence of mechanical contact, active magnetic bearing can be electrically controlled in an accuracy of a micrometer. This makes it a good choice to be used for robot manipulation in the micrometer scale, especially in environments that need to be very clean, for example, surgery or clean rooms. Moreover, it can be used in the applications that need high precision micromotion such as semiconductor wafers manipulation. Despite all these benefits, there are few studies that have investigated the application of active magnetic bearing in the robotics field in spotless environments for micromotion applications. This article proposes a new novel six-degree of freedom two-link manipulator using two contactless joints with active magnetic bearing. The key design aspects of the proposed manipulator are presented. The proposed manipulator is designed using finite element method. Each joint roll angle is controlled using a PID-based feedback linearization controller, while a state feedback controller with integral term is used for controlling the active magnetic bearing five-degree of freedom. The stability analysis of the system, under the proposed controller, is carried out. The robustness of the controllers is tested against end effector payload variations. The results demonstrate that the proposed two-link manipulator is feasible and valid for the applications in spotless environments that need high precision accuracy micromotion control. These significant findings have indicated the feasibility of implementing this proposed manipulator in practice and open the door for developing other types of robots with complete contactless joints using active magnetic bearing.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3