Multiautonomous underwater vehicle consistent collaborative hunting method based on generative adversarial network

Author:

Cai Lei1ORCID,Sun Qiankun2

Affiliation:

1. School of Artificial Intelligence, Henan Institute of Science and Technology, Xinxiang, China

2. School of Information Engineering, Henan Institute of Science and Technology, Xinxiang, China

Abstract

The time-varying ocean currents and the delay of underwater acoustic communication have caused the uncertainty of single autonomous underwater vehicle (AUV) tracking target and the inconsistency of multi-AUV coordination, which make it difficult for multiple AUVs to form a hunting alliance. To solve the above problems, this article proposes the multi-AUV consistent collaborative hunting method based on generative adversarial network (GAN). Firstly, the three-dimensional (3D) kinematic model of AUV is established for the underwater 3D environment. Secondly, combined with the Laplacian matrix, the topology of the hunting alliance in the ideal environment is established, and the control rate of AUV is calculated. Finally, using the GAN network model, the control relationship after environmental interference is used as the input of the generative model. The control rate in the ideal environment is used as the comparison object of the discriminative model. Using the iterative training of GAN to generate a control rate that adapts to the current interference environment and combining multi-AUV topological hunting model to achieve successful hunting of noncooperative target, the experimental results show that the algorithm reduces the average hunting time to 62.53 s and the success rate of hunting is increased to 84.69%, which is 1.17% higher than the particle swarm optimization-constant modulus algorithm (PSO-CMA) algorithm.

Funder

Science and Technology Major Special Project of Xinxiang City

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3