Novel indoor positioning algorithm based on Lidar/inertial measurement unit integrated system

Author:

Jiang Ping1,Chen Liang1,Guo Hang1ORCID,Yu Min2,Xiong Jian1

Affiliation:

1. Information Engineering School, Nanchang University, Nanchang, China

2. College of Software, Jiangxi Normal University, Nanchang, China

Abstract

As an important research field of mobile robot, simultaneous localization and mapping technology is the core technology to realize intelligent autonomous mobile robot. Aiming at the problems of low positioning accuracy of Lidar (light detection and ranging) simultaneous localization and mapping with nonlinear and non-Gaussian noise characteristics, this article presents a mobile robot simultaneous localization and mapping method that combines Lidar and inertial measurement unit to set up a multi-sensor integrated system and uses a rank Kalman filtering to estimate the robot motion trajectory through inertial measurement unit and Lidar observations. Rank Kalman filtering is similar to the Gaussian deterministic point sampling filtering algorithm in structure, but it does not need to meet the assumptions of Gaussian distribution. It completely calculates the sampling points and the sampling points weights based on the correlation principle of rank statistics. It is suitable for nonlinear and non-Gaussian systems. With multiple experimental tests of small-scale arc trajectories, we can see that compared with the alone Lidar simultaneous localization and mapping algorithm, the new algorithm reduces the mean error of the indoor mobile robot in the X direction from 0.0928 m to 0.0451 m, with an improved accuracy rate of 46.39%, and the mean error in the Y direction from 0.0772 m to 0.0405 m, which improves the accuracy rate of 48.40%. Compared with the extended Kalman filter fusion algorithm, the new algorithm reduces the mean error of the indoor mobile robot in the X direction from 0.0597 m to 0.0451 m, with an improved accuracy rate of 24.46%, and the mean error in the Y direction from 0.0537 m to 0.0405 m, which improves the accuracy rate of 24.58%. Finally, we also tested on a large-scale rectangular trajectory, compared with the extended Kalman filter algorithm, rank Kalman filtering improves the accuracy of 23.84% and 25.26% in the X and Y directions, respectively, it is verified that the accuracy of the algorithm proposed in this article has been improved.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Reference22 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3