Multi-robot informative path planning in unknown environments through continuous region partitioning

Author:

Dutta Ayan1ORCID,Bhattacharya Amitabh1,Kreidl O Patrick12,Ghosh Anirban1,Dasgupta Prithviraj3

Affiliation:

1. School of Computing, University of North Florida, Jacksonville, FL, USA

2. School of Engineering, University of North Florida, Jacksonville, FL, USA

3. U.S. Naval Research Laboratory, Washington DC, USA

Abstract

We consider the NP-hard problem of multirobot informative path planning in the presence of communication constraints, where the objective is to collect higher amounts of information of an ambient phenomenon. We propose a novel approach that uses continuous region partitioning into Voronoi components to efficiently divide an initially unknown environment among the robots based on newly discovered obstacles enabling improved load balancing between robots. Simulation results show that our proposed approach is successful in reducing the initial imbalance of the robots’ allocated free regions while ensuring close-to-reality spatial modeling within a reasonable amount of time.

Funder

united nations fund for population activities

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Heuristic Informative-Path-Planning Algorithm to Map Unknown Areas and A Benchmark Solution;2024 IEEE Conference on Control Technology and Applications (CCTA);2024-08-21

2. Path Planning Techniques for Real-Time Multi-Robot Systems: A Systematic Review;Electronics;2024-06-07

3. Multi-UAV Collaborative System for the Identification of Surface Cyanobacterial Blooms and Aquatic Macrophytes;Journal of Intelligent & Robotic Systems;2024-02-23

4. Application of automatic driving task serialisation monitoring for operating robots;Applied Mathematics and Nonlinear Sciences;2024-01-01

5. Multi-UAVs Collaborative Search Scheme in Marine Environments using Deep Reinforcement Learning;2023 Eleventh International Conference on Advanced Cloud and Big Data (CBD);2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3