Model-based sensorless robot collision detection under model uncertainties with a fast dynamics identification

Author:

Cao Pengfei12ORCID,Gan Yahui12,Dai Xianzhong12

Affiliation:

1. School of Automation, Southeast University, Nanjing, People’s Republic of China

2. Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Nanjing, People’s Republic of China

Abstract

This article presents a novel model-based sensorless collision detection scheme for human–robot interaction. In order to recognize external impacts exerted on the manipulator with sensitivity and robustness without additional exteroceptive sensors, the method based on torque residual, which is the difference between nominal and actual torque, is adopted using only motor-side information. In contrast to classic dynamics identification procedure which requires complicated symbolic derivation, a sequential dynamics identification was proposed by decomposing robot dynamics into gravity and friction item, which is simple in symbolic expression and easy to identify with least squares method, and the remaining structure-complex torque effect. Subsequently, the remaining torque effect was reformulated to overcome the structural complexity of original expression and experimentally recovered using a machine learning approach named Lasso while keeping the involving candidates number reduced to a certain degree. Moreover, a state-dependent dynamic threshold was developed to handle the abnormal peaks in residual due to model uncertainties. The effectiveness of the proposed method was experimentally validated on a conventional industrial manipulator, which illustrates the feasibility and simplicity of the collision detection method.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3