Affiliation:
1. School of Civil Engineering, Yantai University, Yantai, China
Abstract
Seismic response of five-story frame structure supported by lead-rubber bearings isolation system is investigated subjected to near-fault ground motions. The main structure is modeled as a simple linear multi-degrees-of-freedom vibration system with lumped masses, excited by near-fault ground motions in the horizontal direction. The variation curves of peak top floor acceleration and peak bearing displacement of isolated building are plotted under different yield shear coefficient. The objective function selected for optimality is to maximize the seismic energy dissipated by the lead-rubber bearings. The main constraint conditions selected for optimality are the minimization of both peak bearing displacement and peak top floor acceleration. Optimum parameters of lead-rubber bearing isolation system are investigated and found that optimum yield shear coefficient of lead-rubber bearings is found to be in the range of 0.10–0.14 under near-fault ground motions. Optimum yield shear coefficient decreases with the increase of second isolation period. Optimum yield shear coefficient of lead-rubber bearings with higher yield displacement is larger than that of lead-rubber bearings with low yield displacement. Optimum ratio of pre-yield stiffness to post-yield stiffness of lead-rubber bearings is found to be in the range of 16–35. Optimum stiffness ratio increases proportionally with the decrease of yield displacement. Optimum stiffness ratio increases slightly with the increase of yield shear coefficient. Excluding the effect of pre-yield stiffness, the optimum second isolation period is recommended to be in the range of 4–6 s.
Subject
Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献