Analysis of low-frequency vibration in a steam turbine based on closed-loop system identification

Author:

Yabui Shota1ORCID,Kotsuchihashi Hiroki2,Inoue Tsuyoshi2ORCID

Affiliation:

1. Tokyo City University, Setagaya-ku, Japan

2. Nagoya University, Nagoya, Japan

Abstract

Steam turbines are used to generate thermal power in electric power plants. They are important industrial equipment that support societal infrastructure. The stable operation of steam turbines is necessary to maintain long-term electrical power supply. However, low-frequency vibration, which is referred to as steam-whirl-induced vibration, is a self-excited vibration that can damage turbines and hinders stable operation. Therefore, a prediction model and stable margin for steam-whirl-induced vibration in steam turbines should be developed. In this study, we propose a method for modeling steam-whirl-induced vibration using closed-loop system identification. This method directly creates a vibration model from the rotor displacement data. The gain, damping, and natural frequency of the vibration were calculated using this model. Moreover, an equation for the relationship between the damping and load was derived using the model, and the stable margin for increasing the load was estimated. Steam-whirl-induced vibration was modeled using the proposed method for the displacement data obtained from an actual steam turbine. The characteristics of the model are in good agreement with the experimental results, indicating the feasibility of using the model to predict steam-whirl-induced vibration.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Reference26 articles.

1. Bachschmid N, Vania A, Pennacchi P. Modelling of steam whirl excitation and evaluation of stability margin. In: Proceedings of the international conference on tribology, 20–22 September 2006, Parma, Italy.

2. Steam-whirl analysis in a high pressure cylinder of a turbo generator

3. Practical applications of singular value decomposition in rotordynamics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3