Effects of pipe casing structure on acoustic emission characteristics of underwater pyrotechnic combustion

Author:

Li Jie1,Du Jun2,Chen Xian1,Wang Yanli1

Affiliation:

1. China Aerospace Construction Group Co. Ltd, Beijing, PR China

2. Logistics Center of CALT, Beijing, PR China

Abstract

In order to investigate the acoustic radiation characteristics of underwater, a pipe casing was introduced and the effects of its main structural characteristics on underwater combustion acoustic radiation were studied by acoustic testing. The results show that the addition of the pipe casing significantly increased the sound pressure level of underwater pyrotechnic combustion, especially the peak of sound pressure level that was increased by 15.9 dB from 155.5 to 171.4 dB at the frequency of 125 and 100 Hz. But the addition of the pipe casing had little effect on the frequency. These results indicated that adding a pipe casing is effective for improving sound pressure level in underwater pyrotechnic combustion. An increase in nozzle diameter from 10 to 12.5 mm resulted in an increase of gas volume, so the peak of sound pressure level and broadband sound pressure level is higher. Changing the pipe casing direction to vertical downward will make the bubble formation period shorter, which will generate more bubbles and strong wake; the interaction between bubbles and wake results in a higher intensity of turbulence, which accounts for the coalescence and breakup of bubbles in the fluid. Besides, changing the diameter of pipe casing can be used to lower the frequency of underwater noise.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3