Affiliation:
1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China
Abstract
With the rapid development of railways in China, effective coordination of the operation of high-speed trains on existing tracks can bring significant economic benefits to railway transportation. However, high-speed trains running on existing tracks will have to cope with larger track irregularities and navigate smaller curve radii, potentially increasing their vibrations. In order to improve the quality of operation of high-speed trains on existing railways, a self-adjusting hybrid damping control (SAHDC) strategy utilizing a fuzzy controller is adopted in this study. A secondary lateral magnetorheological damper (MRD) is controlled to balance the vibration between the car body, bogie, and wheelset. The MRD behavior is described using a viscoelastic-plastic (VEP) model and nonlinear autoregressive exogenous (NARX) inverse model. A dynamical vehicle model with 50 DOFs is constructed and simulated under different existing track conditions. The results show that the SAHDC can guarantee the required ride quality of the car body, while reducing the vibration of the bogie frame and wheelsets as much as possible during travel on straight and curved tracks and suppressing derailment on turnouts.
Funder
the Independent Research and Development Project of the State Key Laboratory of Traction Power
the National Natural Science Foundation of China
Subject
Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献