Experimental validation of the proposed extended Kalman filter with unknown inputs algorithm based on data fusion

Author:

Huang Jinshan1,Li Xianzhi1,Yang Xiongjun1,Zheng Zhupeng12ORCID,Lei Ying1

Affiliation:

1. Department of Civil Engineering, Xiamen University, Xiamen, China

2. Shenzhen Research Institute of Xiamen University, Shenzhen, China

Abstract

The extended Kalman filter is a useful tool in the research of structural health monitoring and vibration control. However, the traditional extended Kalman filter approach is only applicable when the information of external inputs to structures is available. In recent years, some improved extended Kalman filter methods applied with unknown inputs have been proposed. The authors have proposed an extended Kalman filter with unknown inputs based on data fusion of partially measured displacement and acceleration responses. Compared with previous approaches, the drifts in the estimated structural displacements and unknown external inputs can be avoided. The feasibility of proposed extended Kalman filter with unknown inputs has been demonstrated by some numerical simulation examples. However, experimental validation of the proposed extended Kalman filter with unknown inputs has not been conducted. In this paper, an experiment is conducted to validate the effectiveness of the proposed approach. A five-story shear building model subjected to an unknown external excitation of wide-band white noise is conducted. Moreover, the data fusion of partially measured strain and acceleration responses from the building is adopted as it is difficult to accurately measure structural displacement in practice. Identified results show that the recently proposed extended Kalman filter with unknown inputs can be applied to identify structural parameters, structural states, and the unknown inputs in real time.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Scientific-technological Project from Ministry of Housing and Urban-Rural Development of the People’s Republic of China

Natural Science Foundation of Guangdong Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3