Theoretical and experimental study on sound absorption performance of Al2O3-polyurethane foam and microperforated plate composite structure

Author:

Binxia YUAN12ORCID,Weiguang HOU2,Jianben LIU1,Bing ZHOU1,Rui ZHU2ORCID,Lan CAO2

Affiliation:

1. State Key Laboratory of Power Grid Environmental Protection, Wuhan, China

2. College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China

Abstract

Low-frequency noise pollution in substations has a significant impact on the physical and mental health of workers. Reduction low-frequency noise pollution is an urgent problem to solve for researchers. In this paper, the different structures of Al2O3-polyurethane composites and micro-perforated plate were constructed, and the effects of cavity depth, perforated plate, and foam position on sound absorption properties were comprehensively investigated. The results showed that the position of perforated plate and the arrangement of resonance structure were the two most important factors affecting sound absorption performance. When the sound wave passed through the plexiglass plate–cavity–composites foam–perforated plate in turn, the peak position of sound absorption coefficient was located in the ultra-low frequency range. Meantime, the simulation study showed that the friction between the air column and the cavity wall in the perforated plate can consume sound energy to achieve sound absorption.

Funder

Open Fund of State Key Laboratory of Power Grid Environmental Protection

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3