Coupling resonance mechanism of interfacial stratification of sandwich plate structures excited by SH waves

Author:

Guo Feng12ORCID,Wu Jiu Hui12

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, People’s Republic of China

2. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, People’s Republic of China

Abstract

For interfacial stratification mechanism of sandwich plate structures, the forced propagation solution of interface shear stress excited by SH waves is derived by global matrix methods and integral transformation methods. The necessary condition of interfacial shear delamination excited by alternating stress is analyzed with the interface fatigue failure theory. The exact value of forced propagation solution is calculated by adaptive Gauss–Kronrod quadrature numerical integration methods, which is verified via finite element methods. The coupling resonance mechanism of interface shear stratification is revealed by the forced vibration solution and the mass-spring model. The effects of excitation frequency, structural parameters, accretion, and matrix materials on the interfacial shear delamination are analyzed and discussed by practical cases of vibration de-accretion. For interface shear stratification of sandwich structures, the optimal excitation frequency as well as substrate thickness and accretion thickness is the value at coupling resonance, around which the interfacial shear stratification interval is formed by the interface fatigue failure criteria. In the stratification or/and antistratification design excited by vibrations, the excitation source and structure could be optimized by the method. Therefore, the results have important theoretical value for the extension and application of vibration stratification or/and antistratification technology.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3