A six degree of freedom passive vibration isolator with quasi-zero-stiffness-based supporting

Author:

Tuo Jiying1ORCID,Deng Zhaoxiang12,Huang Wei1,Zhang Heshan1

Affiliation:

1. School of Automotive Engineering, Chongqing University, Chongqing, PR China

2. The State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, PR China

Abstract

A six degree of freedom nonlinear passive vibration isolator is proposed based on Stewart platform configuration with the quasi-zero-stiffness structure as its legs. Due to the high static stiffness and low dynamic stiffness of each leg, the proposed six degree of freedom system can realize very good vibration isolation performance in all six directions while keeping high static load-bearing capacity in a pure passive manner. The mechanic model of the proposed six degree of freedom isolator and the dynamic equation of the isolator are established successively. Theoretical analysis on cross coupling stiffness reveals that the system can demonstrate quasi-zero-stiffness property in all six degree of freedom. Moreover, an analysis on stability shows that the condition of structural parameters for the isolator to realize quasi-zero-stiffness is also the stability boundary of the system. A series of numerical simulations on displacement transmissibilities in coupled degree of freedoms, the coupling effects of transmissibility, and a dynamic response in random excitation are carried out to show the effectiveness of the proposed six degree of freedom isolator, as well as the influence of structural parameters on vibration attenuation performance. Considering its high performance in a simple passive manner, it can be foreseen that the proposed six degree of freedom isolator will be applied in various engineering practices with multi-degree of freedom vibration isolation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3