Free vibration analysis of stepped FGM nanobeams using nonlocal dynamic stiffness model

Author:

Tran Lien V1ORCID,Tran Dinh B1,Phan Phuong TT1

Affiliation:

1. Hanoi University of Civil Engineering, Hanoi, Vietnam

Abstract

A nonlocal Dynamic Stiffness Model (DSM) for free vibration analysis of Functionally Graded Material (FGM) nanobeams on a Winkler elastic foundation based on the Nonlocal Elastic Theory (NET) is proposed. The NET model considers the length scale parameter, which can capture the small scale effect of nanostructures considering the interactions of non-adjacent atoms and molecules. Material characteristics of FGM nanobeams are considered nonlinearly varying throughout the thickness. The nanobeams are modelled according to the Timoshenko beam theory and its equations of motion are derived using Hamilton’s principle. The DSM is used to obtain an exact solution of the equation of motion taking into account the neutral axis position. This nonlocal DSM proposed has overcome the stiffening phenomena of the cantilever beam fundamental frequency and validated by comparing the obtained results with published results. Afterwards the proposed model is applied to investigate free vibrations of stepped FGM nanobeams. Numerical results are presented to show the influence of the material distribution profile, geometry, nonlocal, elastic foundation and boundary conditions on the free vibration of stepped FGM nanobeams. It is shown that the proposed nonlocal DSM can be applied to more complex stepped nanostructures.

Funder

Tru?ng Ð?i h?c Xây d?ng

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3