Vibro-acoustic coupling characteristics of orthotropic L-shaped plate–cavity coupling system

Author:

Shi Dongyan1,Ren Wenhui1,Zhang Hong2ORCID,Liu Gai1,Wang Qingshan3

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, PR China

2. National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China

3. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, PR China

Abstract

The research object of this paper is the L-shaped plate–cavity coupling system established by a cuboid acoustic cavity with rigid-wall or impedance-wall and L-shaped plate with numerous elastic boundary conditions in view of the Fourier series method. The main research content of this paper is the vibro-acoustic coupling characteristics. In this paper, the displacements admissible functions of the L-shaped plate are generally set as the sum of two cosines’ product and two polynomials. Sound pressure admissible functions of the cuboid acoustic cavity can be considered as the sum of three cosines’ product and six polynomials. The discontinuity of coupling system at all boundaries in the overall solution domain is overcome in this way. Through the energy principle and the Rayleigh-Ritz technology, it can be got that the solving matrix equation of the L-shaped plate-cavity coupling system. Based on verifying the great numerical characteristics of the L-shaped plate–cavity coupling model, they obtained both the frequency analysis and the displacement or sound pressure response analysis under the excitation, including a unit simple harmonic force or a unit monopole source. The advantages of this method are parameterization and versatility. In addition, some new achievements have been shown, based on various materials, boundary conditions, thicknesses, and orthotropic degrees, which may become the foundation for the future research.

Funder

National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics

Natural Science Foundation of Hunan Province of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3