Dynamical analysis of hollow-shaft dual-rotor system with circular cracks

Author:

Yongfeng Yang12ORCID,Jianjun Wang1,Yanlin Wang12,Chao Fu1,Qingyang Zheng1,Kuan Lu1

Affiliation:

1. Institute of Vibration Engineering, Northwestern Polytechnical University, Xi’an, China

2. Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang, China

Abstract

In this paper, we considered a dual-rotor system with crack in shaft. The influence of circular crack in hollow shaft on dynamical response was studied. The equations of motion of 12 elements dual-rotor system model were derived. Harmonic balance method was employed to solve the equations. The critical speed and sub-critical speed responses were investigated. It was found that the circular crack in hollow shaft had greater influence on the first-backward critical speed than the first-forward critical speed. Owing to the influence of crack, the vibration peaks occurred at the 1/2, 1/3 and 1/4 critical speeds of the rotor system, along with a reduction in sub-critical speeds and critical speeds. The deeper crack away from the bearing affected the rotor more significantly. The whirling orbits, the time-domain responses and the spectra were obtained to show the super-harmonic resonance phenomenon in hollow-shaft cracked rotor system.

Funder

NPU Aoxiang New Star

Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern Universit

National Natural Science Foundation of China

Graduate Innovation Fund of Northwestern Polytechnical University

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3