Deconvolution beamforming based on a fast gradient algorithm for sound source localization

Author:

Zan Ming1ORCID,Xu Zhongming1,Zhang Zhifei1ORCID,Tang Zhonghua1,Huang Linsen1

Affiliation:

1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, P.R. China

Abstract

Deconvolution beamforming has gotten increased attention as a way to improve the spatial resolution of delay-and-sum beamforming. It has the ability to decrease sidelobes and increase resolution. However, compared to conventional beamforming, the extra computation of the deconvolution method is a drawback. A more efficient approach is developed to improve the computing speed of the deconvolution method. Specifically, when tackling deconvolution problems, this method improves computational performance by combining Fourier operation with a fast gradient algorithm called the double momentum gradient algorithm. We compare the proposed method with two known effective deconvolution methods, namely the fast Fourier transform non-negative least squares algorithm and the fast iterative shrinkage threshold algorithm. The results of simulation and experiment reveal that the proposed method tends to give a better spatial resolution within a short computational time and is more suitable for engineering applications.

Funder

Zhongming Xu

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aerial Acoustic Targeting Orientation Estimation Based on Deconvolved Conventional Beamforming;2023 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC);2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3