Sound insulation performance and modal analysis of asymmetrical insulating laminated glass

Author:

Zhu Xi1,Wang Li Juan1ORCID,Wang Xiao Li2,Zheng Yi De1,Luo Liang1

Affiliation:

1. School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an, China

2. Xi’an Jianke Doors and Windows Co., Ltd., Xi’an, China

Abstract

Windows are commonly the primary way for noise to enter the building environment. Most windows achieve higher sound insulation targets by simply increasing glass thickness or laminate. However, the glass thickness cannot be increased freely due to the window frame’s limitation. This research selects eleven kinds of asymmetric insulating laminated glass (glass + polyvinyl butyral + glass + air + glass) within 27 mm, which are the typical thicknesses of window frames. The three pieces of glass have equal thicknesses. The half-space acoustics method investigated the acoustic properties and modal behavior of the glass with finite thickness. The results show that when PVB or three glass increases simultaneously, and the sound insulation of each glass can be improved by 0.9∼3.4 dB or 3.7∼21.8 dB at first resonant frequencies, respectively. The glass with the best sound insulation is 7 mm glass + 0.76 mm polyvinyl butyral + 7 mm glass + 5 mm air + 7 mm glass (7 + 0.76 + 7 + 5A + 7 for short). Its sound transmission loss (TL) is 38.5 dB from 125 to 4000 Hz and 16.8 dB in the first resonant frequency (200 Hz). In addition, its first resonant frequency is the highest among eleven kinds of glass, and the number of natural frequencies in the low frequency range is only 9. These findings can provide a basis for designing asymmetric insulating laminated glass to improve the low frequency noise reduction effect effectively.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Reference32 articles.

1. Grahn P, Jensen MH. Optimizing noise barriers with comsol multiphysics, Finland. Acoustics Days, 2019, p. 10.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3