Response analysis of the vibro-impact system under fractional-order joint random excitation

Author:

Wang Jun12ORCID,Yang Zijian1ORCID,Sun Wanqi1,Zhang Jianchao2ORCID

Affiliation:

1. Department of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, China

2. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, China

Abstract

As a kind of good damping material, viscoelastic material is widely used in machinery, civil engineering, and other fields. In this paper, the viscoelasticity of the system is described by fractional differentiation. The dynamic response of a unilateral vibro-impact system with a viscoelastic oscillator under joint random excitation is studied, in which joint random excitation is composed of additive and multiplicative white noise. The fractional-order derivative was calculated based on Caputo’s definition, and the fractional derivative was equivalent to the corresponding linear damping force and linear restoring force. As a result, a new random system without fractional-order terms was obtained. A non-smooth transformation was introduced, which was equivalent to the original system to a new system without a velocity jump. The steady-state probability density functions of fractional-order vibro-impact systems under joint random excitation are solved by using the random average method and non-smooth transformation. In addition, the effects of parameters on the steady-state response of the system are analyzed.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3