Overtaking interaction of electron-acoustic solitons in Saturn’s magnetosphere

Author:

Khattak M Yousaf1,Masood W12,Jahangir R2,Siddiq M2,Alrowaily Albandari W3,El-Tantawy S A45ORCID

Affiliation:

1. COMSATS University Islamabad, Islamabad, Pakistan

2. National Center for Physics (NCP), Quaid-i-Azam University Campus, Islamabad, Pakistan

3. Department of Physics, College of Science, Princess Nourah bint AbdulRahman University, Riyadh, Saudi Arabia

4. Department of Physics, Faculty of Science, Port Said University, Port Said, Egypt

5. Department of Physics, Faculty of Science and Arts, Research Center for Physics (RCP), Al-Baha University, Al Baha, Saudi Arabia

Abstract

The progression of nonlinear electron-acoustic waves (EAWs) in a magnetized and collision-free plasma made up of cold inertial electrons, inertialess superthermal electrons, and stationary background ions with special reference to Saturn’s magnetosphere (SMS) is explored. The method of reductive perturbation (MRP) is employed to obtain the evolution equation (i.e., Zakharov– Kuznetsov equation (ZKE)) that governs the propagation of electron acoustic solitons (EASs). Using the elegant and efficient Hirota bilinear method (HBM), multi-soliton solutions (MSSs) of the ZKE are determined. The impact of the effects of hot-to-cold electron density ratio, magnetic field (MF) strength, and superthermality on single as well as the interaction of EASs is examined. Estimates of the values of the electric field at several radii of SMS (i.e., 12 R s − 17.8 R s, where R s is the radius of Saturn) are presented, which are found in μV/ m to mV/ m range and are in perfect agreement with the data from Cassini radio and plasma wave science wideband receiver. Moreover, the influence of the relevant plasma parameters on the interaction time and spatial extent of the interacting EASs is also explored.

Funder

Princess Nourah Bint Abdulrahman University

Abdus Salam International Centre for Theoretical Physics

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3