Sound transmission loss optimization of clamped double-panels

Author:

Zhang Yumei1ORCID,Li Ye2ORCID,Xiao Xinbiao3ORCID,Zhao Yue1,Yao Dan1,Ai Yi1,Pan Weijun1

Affiliation:

1. College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, China

2. School of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou, China

3. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu, China

Abstract

The panel cavity structure is one of the key components of the aircraft (vehicle) body and is among the main noise transmission pathways. Based on the modal superposition and Galerkin method, this paper realizes the theoretical model of sound insulation of the clamped, double-panel structure. The non-dominated sorting genetic algorithm-II (NSGA-II) is used to realize the sound insulation of the clamped double-panel structure. Through optimization, the fitting function and law of structural surface density and the optimized normal weighted sound insulation Pareto fronts were obtained. The results show that among the optimization, for the Pareto front cases, their double-panel thickness ratio h1/ h2 is relatively far away from 1, and the corresponding cavity thickness H is relatively large. The influence of boundary conditions and size effects of lightweight sound insulation optimization are also discussed. The research on the influence of boundary and size indicates that the difference in the optimal weighted sound insulation Pareto fronts corresponding to the same surface density is mostly within the 1 dB range. Both the boundary and thickness of the panel will affect the frequency STL, while the boundary conditions or structure size changed, even the total thickness of panels needs to be the same, and the structure can also have similar weighted sound transmission loss ( Rw) when the thickness ratio of the double-panel structure is chosen properly. The difference of material effects is also discussed. This research provides a method for the sound insulation optimization of clamped double-panel structures concerning the boundary and size effect.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3