Analytical expressions of friction-induced self-excited vibration amplitudes of the marine rubber bearing-shaft system

Author:

Wu Chuang123ORCID,Shang Dejiang123,Xiao Yan123,Zhang Chao123,Liu Yongwei123

Affiliation:

1. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, China

2. Key Laboratory of Marine Information Acquisition and Security, Harbin Engineering University, Ministry of Industry and Information Technology, Harbin, China

3. National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin, China

Abstract

By the analytical method, this paper investigates the mode-coupling friction-induced instability and the resulting stick-slip self-excited vibration of the marine stern water-lubricated rubber bearing-shaft system. The 2-DOF simplified theoretical model is reasonably developed to characterize stern water-lubricated rubber bearing-shaft system. The complex eigenvalue analysis is conducted to analyze the instability behaviors of the model. Results show the normal force and nonlinear stiffness often deteriorate the stability of the model. Subsequently, two types of analytical expressions for stick-slip vibration amplitude of the model are by the Krylov-Bogoliubbov-Mitropolsky method, which match well with the results from numerical integration. Then, parameter discussion about the influences of friction coefficient, damping, normal force and nonlinear contact stiffness on self-excited vibration amplitudes are performed. The results indicate that the bearing-shaft system can keep the steady-state static equilibrium or the oscillations with small amplitude if the proper parameter values of the variables are chosen, which will benefits controlling the friction-induced vibration of the water-lubricated rubber bearing-shaft system. The novelty of this work is to give analytical expressions for stick-slip self-excited vibration amplitude of the simplified model.

Funder

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3