Free vibrations of functionally graded porous hanging and standing cantilever beams

Author:

Sari Ma’en S1ORCID,Faroughi Shirko2

Affiliation:

1. Mechanical and Maintenance Engineering Department, German Jordanian University, Amman, Jordan

2. Faculty of Mechanical Engineering, Urmia University of Technology, Urmia, Iran

Abstract

The free oscillations of a functionally graded (FG) porous vertical cantilever beam in the frame work of Euler–Bernoulli beam theory is investigated. The beam is subjected to the gravity-load and the properties of the FG material such as the modulus of elasticity and the density are supposed to change through the thickness of the beam according to power-law relations. The equation of motion is derived using Newton’s second law. The Numerical Chebyshev collocation method is utilized to determine the transverse frequencies of the FG porous hanging and standing cantilever Euler–Bernoulli beams. A parametric study is conducted to determine the effects of various factors such as the transverse functionally graded index, the porosity factor, and the elastic and the mass density ratios on the natural frequencies and the mode shapes of the FG porous vertical hanging and standing cantilever thin beams under their self-weight. The accuracy of the proposed numerical method is evaluated through comparisons of the frequencies obtained from the present approach with those available in previous literature. In general, it was observed that the elastic ratio has a softening impact on the frequencies except for the fundamental frequency which remains constant as the elastic ratio increases. Moreover, the porosity parameter and the power-law index may have a softening or hardening impact on the frequencies, and the behavior of these frequencies depends on the values of the elastic and the mass density ratios.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3