Stability and analysis of the vibrating motion of a four degrees-of-freedom dynamical system near resonance

Author:

Amer TS1ORCID,Ismail AI2ORCID,Shaker MO1,Amer WS3ORCID,Dahab HA4

Affiliation:

1. Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt

2. Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, Saudi Arabia

3. Mathematics and Computer Science Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt

4. Department of Basic Science, Faculty of Engineering, Horus University, Damietta, Egypt

Abstract

This article investigates the impact of three harmonically external moments on the motion of a four-degrees-of-freedom (DOF) nonlinear dynamical system composed of a double rigid pendulum connected to a nonlinear spring with linear damping. In light of the system’s generalized coordinates, the governing system (GS) of motion is derived using Lagrange’s equations. With the use of the multiple-scales method (MSM), the approximate solutions (AS) of the equations of this system are obtained up to a higher order of approximation, maybe the third order. Within the framework of the absence of secular terms, the conditions of solvability are obtained. Accordingly, the different resonance cases are categorized, and three of them are investigated simultaneously. Thus, these conditions are updated in preparation for achieving the modulation equations (ME) for the examined system. The numerical solutions (NS) of the GS are achieved using the algorithms of fourth-order Runge–Kutta (4RK), which are compared with the AS, which displays their high degree of consistency and demonstrates the precision of the MSM. The motion’s time history, steady-state solutions, and resonance curves are graphed to demonstrate the influence of various system physical parameters. All relevant fixed points at steady-state situations are identified and graphed in accordance with the Routh–Hurwitz criteria (RHC). Therefore, the zones of stability/instability of are checked and analyzed. Numerous real-world applications in disciplines like engineering and physics attest to the significance of the nonlinear dynamical system under study such as in shipbuilding, automotive devices, structure vibration, developing robots, and analysis of human walking.

Funder

The Deanship of Scientific Research at Umm Al-Qura University

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3