Experimental and numerical investigation on sound absorption characteristics of 3D printed coupled-cavity integrated passive element systems

Author:

Yuvaraj Loganathan1ORCID,Jeyanthi Subramanian2,Mailan Chinnapandi Lenin Babu2,Pitchaimani Jeyaraj3ORCID

Affiliation:

1. Department of Automobile Engineering, Acharya Institute of Technology, Bengaluru, India

2. SMEC, Vellore Institute of Technology, Chennai, India

3. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India

Abstract

In aerospace applications, most of the components are made of composite materials due to the high strength-to-weight ratio. However, those composite structures are poor in sound absorption; for instance, payload fairing used in the launch vehicle system experiences broadband noise. Tuned Helmholtz resonator (HR) is being used to control few dominant low frequencies, and other frequency is left untreated. In this study, the acoustic mode of the rectangular cavity has been suppressed by a novel design of integrated passive elements (IPEs), which comprises a Helmholtz resonator, micro-perforated panel, and polyurethane foam. The proposed design reduces the noise level in Low-Mid-High frequencies, which is more efficient than passive elements used to control a single target frequency. The integrated passive components fabricated using the 3D printing technique are tested experimentally in an impedance tube to quantify the sound absorption coefficient, and the results are compared with the theoretical result. Further, the study presents a simplified approach for numerical simulation of fabricated samples coupled to a rectangular cavity system, which is validated experimentally. The overall sound pressure level (OSPL) results of the proposed design achieve 4–6 dB noise level reduction in [Formula: see text] octave frequency band.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3