Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression

Author:

Wang Yong1,Zheng Qiangang1,Zhang Haibo1,Chen Haoying1

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

In order to achieve the fast response of turboshaft engine combined with torsional vibration, a predictive controller of helicopter/engine based on the least mean square adaptive torsional vibration suppression is proposed and designed. First, in order to make up for the insufficiency of conventional notch filter on torsional vibration suppression with changeable frequency under variable rotor speed, an adaptive one based on least mean square is presented in the process of helicopter autorotation downward. Then, based on the least mean square adaptive filter, a predictive controller based on the support vector regression is proposed to compensate for the dynamic control performance in helicopter autorotation recovery process. It is shown that least mean square adaptive filter can suppress all low-order torsional vibrations with amplitude less than 15% in comparison with the notch filter, which proves the more remarkable ability of adaptive torsional vibration suppression. Meanwhile, the droop of power turbine speed can be reduced to less than 0.3% with the steady-state error no more than 0.01% by adopting the predictive controller based on least mean square adaptive torsional vibration suppression. The fast response and high-quality control of turboshaft engine has been realized.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3