A hybrid acoustic structure for low-frequency and broadband underwater sound absorption

Author:

Jia Xinyu1ORCID,Jin Guoyong1,Shi Kangkang1,Bu Chunyang1,Ye Tiangui1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin, China

Abstract

The underwater anechoic coating with local resonant units is an effective method to achieve low-frequency sound absorption. However, the structure obtained in this way is not satisfactory in the sound absorption effect of mid-high frequency bands. Capitalizing on the impedance gradient characteristics of functionally graded materials (FGMs) can improve the impedance matching between the structure and the medium, and enhance the dissipation of sound waves inside the structure. Based on these, we propose an underwater acoustic structure, which can improve and obtain low-frequency and broadband sound absorption performance by embedding local resonators into FGMs. To reveal the sound-absorbing mechanism and further optimize the low-frequency absorption performance of the structure, we conduct quantitative analyses on the parameters of FGMs, the materials and forms of resonators. The results indicate that by appropriately adjusting the studied parameters, different low-frequency sound-absorbing peak can be obtained and the absorption effects are also further improved.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liquid-solid synergistic mechanism sound absorption for underwater anechoic coating;International Journal of Mechanical Sciences;2024-05

2. A novel anti-hydrostatic force-chain metastructure;Chemical Physics Letters;2024-03

3. Tunable underwater sound absorption characteristics of 0–3 piezoelectric anechoic coating;The Journal of the Acoustical Society of America;2024-01-01

4. OFDM Signals Underwater Experiments and Analysis in East Sea of South Korea;2023 IEEE 7th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE);2023-11-29

5. Theoretical investigation on the underwater sound absorption of a functionally graded anechoic coating under the phased arc array incidence;Applied Mathematical Modelling;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3