Prediction of acoustic pressure of thermoacoustic combustion instability based on Elman neural network

Author:

Zeng Qingwen12ORCID,Hu Chunyan123,Xu Hanling1,Sun Jiaxian1,Tan Xiangmin123,Zhu Junqiang123

Affiliation:

1. Key Laboratory of Light-duty Gas-turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Innovation Academy for Light-duty Gas Turbine, Chinese Academy of Science, Beijing, China

Abstract

Accurate prediction of thermoacoustic instability is a prerequisite for thermoacoustic control to avoid the damage of combustion chamber, however, this problem has not been completely solved yet. This paper proposes a data-driven method based on the Elman neural network (ENN) to predict the value of acoustic pressure of combustion instability. As a comparison, a model based on support vector machine (SVM) was built. It is proved that ENN has better prediction performance with a certain predicted time horizon compared to the SVM method. What is more, the prediction model based on ENN can adapt to time-varying characteristics of the transition scenario which is characterized by amplitude modulation, multiple frequencies, and irregular bursts. ENN model still maintains enough prediction accuracy for various input training sets, indicating that ENN can fully mine the features of data and has a strong feature extraction ability in combustion oscillation prediction. Hence, it is demonstrated that ENN is a promising prediction tool for thermoacoustic instability under various combustion conditions. These findings are of great significance for the accurate prediction and control of thermoacoustic instability.

Funder

National Science and Technology Major Project

the National Defense Basic Scientific Research Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3