Theoretical and experimental investigation on the sound absorption performance of ultra-thin curled acoustic metasurface

Author:

Cheng Baozhu12ORCID,Zhang Jiesen1,Liu Yang1,Sun Jiaqi3,Li Bin4,Hou Hong2

Affiliation:

1. School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, China

2. Laboratory of Ocean Acoustics and Sensing, School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China

3. Ningbo Fotile Kitchen Ware Co Ltd, Ningbo, Peoples R China

4. Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, China

Abstract

A simplified model of the absorption coefficient of traditional Helmholtz resonators (THR) was established, and the influence of different geometric parameters on the absorption coefficient of THR was analyzed. To realize the low-frequency broadband acoustic structure design, an accurate theoretical model for the sound absorption coefficient of the curled acoustic metasurface (CAM) unit was established. Based on the complex frequency plane method (CFPM), the CAM units with perfect sound absorption at four discrete frequencies were designed. The low-frequency broadband acoustic metasurfaces in parallel under decoupled and coupled conditions were studied, and the thickness is only 12 mm. The high efficiency of sound absorption above 0.8 was achieved in the frequency range of 758 Hz–940 Hz. The experiment verifies the efficient sound absorption effect of the CAM unit and the broadband sound absorption effect under coupled conditions. The research in this paper has a certain potential applications for low-frequency broadband noise control technology.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3