On the oscillations in a nonextensive complex plasma by improved differential transformation method: An application to a damped Duffing equation

Author:

Aljahdaly Noufe H1ORCID,Alharbi Maram A1,Alharbi Abrar A1,Alharbey RA2,EL-Tantawy SA34ORCID

Affiliation:

1. Department of Mathematics, Faculty of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia

2. Mathematics Department, Faculty of Science, Al-Sulymania Women’s Campus, King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia

3. Center for Physics Research (CPR), Department of Physics, Faculty of Science and Arts, Al-Mikhwah, Al-Baha University, Al-Baha 65431, Saudi Arabia

4. Department of Physics, Faculty of Science, Port Said University, Port Said 42521, Egypt

Abstract

In this study, the nonlinear damping oscillations in a complex non-Maxwellian plasma are investigated. For this purpose, the set of fluid equations of the present plasma model is reduced to the Burger-modified Korteweg De Vries equation (BmKdV) equation using a reductive perturbation technique. Using the traveling wave transformation, the BmKdV equation can be reduced to a damped Duffing equation. The numerical solutions to the damped Duffing equation are obtained using multistage differential transformation method (MsDTM). Also, we compared the obtained results to the semi-analytical approximations using the Padé differential transformation (PDTM) method and numerical solution, by the 4th-order Rung Kutta (RK4) method and analytical solution by He’s frequency method. The impact of relevant plasma parameters, namely, negative dust concentrations and ion kinematic viscosity on the profile of dust ion-acoustic oscillations are examined. The suggested mathematical approaches can help many authors for explaining the mystery of their laboratory results. Moreover, the suggested numerical method can be applied for solving higher order nonlinearity oscillations for a long domain.

Funder

King Abdulaziz University

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3