Diagnosis of ball-bearing faults using support vector machine based on the artificial fish-swarm algorithm

Author:

Lin Chih-Jer1ORCID,Chu Wen-Lin2,Wang Cheng-Chi3ORCID,Chen Chih-Keng4ORCID,Chen I-Ting1

Affiliation:

1. Graduate Institute of automation Technology, National Taipei University of Technology, Taipei

2. Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung

3. Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, Taichung

4. Department of Vehicle Engineering, National Taipei University of Technology, Taipei

Abstract

Ball bearings are important parts of all modern rotating machines. Their function is to reduce friction, support rotating shafts and spindles, and bear loads. Bearing damage can result in abnormal vibrations, cause machine malfunction, and even be dangerous. In this study, analysis of four different ball-bearing conditions was carried out: normal bearings and bearings with inner ring, rolling body, and outer ring malfunction. This was based on electromechanical vibration signals produced on a fault diagnosis simulation platform. The objective was to use a series of signal processing analytical methods to build a set of identification models used to forecast malfunction. Wavelet packet transform technology was first used to process the vibration signal. The signals were pre-processed and analyzed before eigenvalue calculation was done to analyze the signal changes which allowed determination of the nature of the bearing malfunction to be made. The extracted eigenvalues and ball-bearing status categories were input to the support vector machine for model training and testing. Finally, the constructed model parameters were integrated with particle swarm optimization, and the artificial fish-swarm algorithm was used to obtain the optimal parameters for the classifier, and this improved the accuracy of malfunction classification.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3