Synchronization behaviors of a vibrating mechanical system with adjustable frequencies and motion trajectories

Author:

Zhang Xueliang12ORCID,Zhang Wei1,Chen Weihao1,Hu Wenchao1,Zhang Xu1,Wen Bang-Chun1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China

2. Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education of China, Northeastern University, Shenyang, China

Abstract

In present work, the double and triple-frequency synchronization behaviors of a vibrating mechanical system with two different driving frequencies, driven by three reversed rotating exciters, are investigated by theory, numeric, and experiment. Based on Lagrange’s equations, the dynamic model corresponding to vibrating machine is proposed and motion differential equations are constructed. The Bogoliubov standard formal equations for three exciters are established, by introducing the asymptotic method, in which the synchronization problem is converted into that of the existence and stability of zero-valued solution of the average differential equations. The synchronization criterion of satisfying the synchronous operation is deduced. According to the Routh–Hurwitz criterion, the stability criterion of the synchronous states is achieved analytically. Based on the obtained theory results, the stability characteristics of the system, are numerically discussed in detail, including the stability ability coefficients and stable phase differences. Finally, simulations and experiments under the condition of two different driving frequencies, are performed to further examine the validity of the theoretical and numerical qualitative results. The present work can provide a theoretical reference for designing some new types of the vibrating machines with adjustable frequencies and motion trajectories.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3