Numerical optimizing noise damping performances of Helmholtz resonators with a rigid baffle implemented at neck in presence of a grazing flow

Author:

Wu Weiwei1,Guan Yiheng2ORCID

Affiliation:

1. School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang City, Jiangsu Province, China

2. Department of Mechanical Engineering, College of Engineering, University of Canterbury, Christchurch, New Zealand

Abstract

As an applicable noise attenuator, Helmholtz resonator is mainly used to dampen acoustic noise at low- and medium-frequency ranges. It is typically implemented in combustion-engines and gas turbines to dampen thermoacoustic instabilities. However, it has a narrow effective frequency range and does not work effectively at off-design conditions. In this work, we consider a modified structured Helmholtz resonator (HR) at its neck by applying a rigid baffle in order to maximize its’ noise damping effect and to broaden its frequency bands. The resonator is attached to a cylindrical duct/pipe in presence of a mean flow (grazing flow), aiming to simulate the practical engines flow configuration. For this, a two-dimensional frequency domain numerical model is developed by using COMSOL V5.3. The numerical simulations are carried out by solving the linearized Navier–Stokes equation in frequency domain with low computational cost and time. In order to obtain an optimum design in terms of the maximum noise damping performances, 10 new different configurations/designs are proposed. The effects of 1) the single baffle attached to the upstream or downstream sidewall of the neck ends, that is, Design A, B, C, and D or double baffles, that is, Design E, F, G, and H), 2) the baffle implementation location, 3) the length of the rigid baffle, and 4) the grazing flow low Mach number are evaluated and compared. It is found that Design C is associated with improved TL by 50% and decreased resonant frequency by 20% comparing with the conventional HR. The present preliminary study shows that Design C is the better design. Further experimental and optimization researches are needed to sheds light on the optimum design of a Helmholtz resonator with neck structure being modified, as there is a low Mach number grazing flow.

Funder

University of Canterbury

Jiangsu University of Science and Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3