Optimizations of distributed dynamic vibration absorbers for suppressing vibrations in plates

Author:

Zhu Xuezhi1ORCID,Chen Zhaobo1,Jiao Yinghou1

Affiliation:

1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, P. R. China

Abstract

Dynamic vibration absorber is an ideal device for vibration control at specific frequencies. In order to get a robust vibration control performance, multiple or distributed dynamic vibration absorbers are usually used for suppressing vibrations in plate structures. Optimization methods for the single dynamic vibration absorber in various vibration systems had been proposed many years ago. However, the analytical optimization solutions with respect to the distributed dynamic vibration absorbers for the plate structures have not been found. In this paper, the optimization problems of the distributed dynamic vibration absorbers for suppressing vibrations in plates are studied. Vibration equations of the plate carrying distributed dynamic vibration absorbers are established using modal superposition method. The similarities of vibration shapes of the dynamic vibration absorbers and mode shapes of the plate are revealed. According to the characteristics of the vibration shapes of dynamic vibration absorbers, the vibration equations of the plate carrying distributed dynamic vibration absorbers are transformed into a form of equations of a two degree of freedom system. The analytical optimization formulas of the distributed dynamic vibration absorbers for suppressing vibrations in plates are derived by applying the fixed-points theory. The effectiveness of the optimization formulas is verified through numerical simulations. The simulation results also show that a brilliant multi-mode vibration control can be realized by using the optimized distributed dynamic vibration absorbers.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3