Controlling the kinematics of a spring-pendulum system using an energy harvesting device

Author:

He Chun-Hui1ORCID,Amer Tarek S2ORCID,Tian Dan3ORCID,Abolila Amany F4,Galal Abdallah A4ORCID

Affiliation:

1. College of Mathematics, China University of Mining and Technology, Xuzhou, China

2. Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt

3. School of Science, Xi’an University of Architecture and Technology, Xi’an, China

4. Department of Physics and Engineering Mathematics, Faculty of Engineering, Tanta University, Tanta, Egypt

Abstract

This work focuses on vibration alleviation and energy harvesting in a dynamical system of a spring-pendulum. The structure of the pendulum is modified using an independent electromagnetic harvesting system. The harvesting depends on the oscillation of a magnet in a coil. An endeavor has been made to get both the energy harvesting and mitigation of vibration efficacy of the harvester. The governing kinematics equations are derived using Lagrange’s equations and are solved asymptotically using the multiple scales method to achieve the intended outcome as new and precise results. The resonance states are classified, and the influence of various parameters of the studied system is analyzed. Fixed points at steady states are categorized into stable and unstable. The time behavior of the solutions, the modified amplitudes, and phases are examined and interpreted in the light of their graphical plots. Zones of stability and instability are concerned, in which the system’s behavior is stable for a wide range of used parameters. This model has become essential in recent times as it uses control sensors in industrial applications, buildings, infrastructure, automobiles, and transportation.

Funder

Shaanxi Province Educational Science Planning Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3