Affiliation:
1. School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China
Abstract
The existence of nonlinearity is an inevitable frequent occurrence that should be considered to accurately identify the modal parameters of a vibration system using operational modal analysis. A problem is that the traditional operational modal analysis method based on the linear modal theory is not applicable to modal parameter identification of vibration systems with nonlinearity. A solution is as follows: this paper is aimed at solving the problem by proposing a new operational modal analysis method to carry out modal parameter identification for a nonlinear vibration system. The new operational modal analysis method, based on the forced response and symbolic regression method without assuming any pre-existing information and only using mathematical symbols, is introduced to solve the problem by automatically searching for the expression structure and modal parameters of a system in nonlinear normal modes. The simulation result of a three-degrees-of-freedom nonlinear system reveals the high accuracy of the proposed operational modal analysis method in extracting the modal parameters. Then, a rod fastening rotor model is considered, and the capability of the proposed operational modal analysis method to precisely extract its modal parameters is further evaluated.
Subject
Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献