Operational modal analysis using symbolic regression for a nonlinear vibration system

Author:

Jiang Xuchu1,Jiang Feng1ORCID

Affiliation:

1. School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China

Abstract

The existence of nonlinearity is an inevitable frequent occurrence that should be considered to accurately identify the modal parameters of a vibration system using operational modal analysis. A problem is that the traditional operational modal analysis method based on the linear modal theory is not applicable to modal parameter identification of vibration systems with nonlinearity. A solution is as follows: this paper is aimed at solving the problem by proposing a new operational modal analysis method to carry out modal parameter identification for a nonlinear vibration system. The new operational modal analysis method, based on the forced response and symbolic regression method without assuming any pre-existing information and only using mathematical symbols, is introduced to solve the problem by automatically searching for the expression structure and modal parameters of a system in nonlinear normal modes. The simulation result of a three-degrees-of-freedom nonlinear system reveals the high accuracy of the proposed operational modal analysis method in extracting the modal parameters. Then, a rod fastening rotor model is considered, and the capability of the proposed operational modal analysis method to precisely extract its modal parameters is further evaluated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3