Low-frequency vibro-acoustic response of an optimized fiber-reinforced graphite truss sandwich panel filled with wood-based material

Author:

Wang Luyao12,Dai Liming12,Hu Gang3

Affiliation:

1. College of Computer, Qinghai Normal University, Xining, China

2. Industrial Systems Engineering, University of Regina, Regina, SK, Canada

3. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, China

Abstract

Conventional metallic sandwich panels are widely used for noise control owing to their good noise control capabilities and excellent mechanical strength-to-weight ratio property. Furthermore, sound-absorbing products consisting of glass or mineral fiber materials are generally filled into the sandwich structures to lower the vibration response in resonance frequency and to enhance the structural noise attenuation capacity. In the present study, a fiber-reinforced graphite material is used as an alternative to its metallic counterparts. Moreover, a wood-based renewable absorption material is used as the absorption material and is filled into the sandwich structural core. The vibro-acoustic characteristics of the panel with such a design are numerically investigated using Actran. The findings of the research indicate that the proposed sandwich structure achieves advanced low-frequency noise control performance in comparison with other conventional metallic sandwich panels. Approximately 7 dB increase in sound transmission loss in the audible-frequency range is achieved in addition to a reduced panel weight and more stable vibration with reduced amplitude. The existing data available in the literature are employed for validating and illustrating the accuracy and reliability of the proposed approach.

Funder

Natural Sciences and Engineering Research Council of Canada

Mathematics of Information Technology and Complex Systems

University of Regina

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3