Comparison study of different indoleamine-2,3 dioxygenase inhibitors from the perspective of pharmacodynamic effects

Author:

Jiang Xue1,Li Xiaopeng1,Zheng Shuang1,Du Guangying1ORCID,Ma Jinbo1,Zhang Liming1,Wang Hongbo1,Tian Jingwei1

Affiliation:

1. School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China

Abstract

Introduction: Indoleamine 2,3-dioxygenase (IDO) was a potential tumor immunotherapy target. IDO inhibitors showed inconsistent results in clinical trials, but no preclinical comparative study was reported. The purpose of this study was to evaluate the differences of representative IDO inhibitors (PCC0208009, INCB024360, NLG919) from the pharmacological perspective. Methods: In vitro experiments included: inhibition effects on IDO activity in cell and enzyme-based assay, effects on IDO expression in HeLa cells, and enhancement of proliferation and activation of peripheral blood mononuclear cell (PBMC). In vivo experiments included: pharmacokinetics and tumor distribution in CT26-bearing mice, effects on Kyn/Trp and anti-tumor effect and immunological mechanism in CT26 and B16F10 tumor-bearing mice. Results: Compared with INCB024360 and NLG919, PCC0208009 effectively inhibited IDO activity at lower dose 2 nM and longer duration more than 72 h, had higher enhancements on PBMC proliferation and activation, and could inhibit the IDO expression in Hela cells. The pharmacokinetics characteristics of three IDO inhibitors were similar in CT26-bearing mice. In CT26 and B16F10 tumor-bearing mice, PCC0208009 and INCB024360 had similar effects in Kyn/Trp reduction, and more potent than NLG919; three IDO inhibitors had similar effects in tumor suppression, changes of the percentages of CD3+CD8+ and CD3+CD4+ T cells, and activation of tumor infiltrating lymphocytes, while PCC0208009 had a better tendency than INCB024360 and NLG919. Conclusion: PCC0208009, INCB024360, and NLG919 were all effective IDO inhibitors, but the comprehensive pharmacological activity of PCC0208009 was better than INCB024360 and NLG919, which was basically consistent with the results or progresses of clinical trials.

Funder

Taishan Industry Leading Talent Laureate

Major New Drugs Research & Development

dream project of ministry of science and technology of the people’s republic of china

Publisher

SAGE Publications

Subject

Pharmacology,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3