Combining first prediction time identification and time-series feature window for remaining useful life prediction of rolling bearings with limited data

Author:

Li Hai1,Wang Chaoqun2ORCID

Affiliation:

1. Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu, China

2. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China

Abstract

Limited data are common in the problem of remaining life prediction (RUL) of rolling bearings, and the distribution of degradation data of rolling bearings under different working conditions is quite different, which makes it difficult to predict the RUL of rolling bearings with limited data. To address this issue, this study combines first prediction time identification (FPT) and time-series feature window (TSFW) for predicting the RUL of rolling bearings with limited data. Firstly, the proper first prediction time is identified by a novel FPT identification method considering root mean square and Kurtosis simultaneously. Subsequently, to accurately capture the sequential characteristics of bearing degradation data, the TSFW is constructed and then adaptively compressed considering degradation factor that is derived mathematically. Based on this, this study employs multi-step ahead rolling prediction strategy with degradation factor from FPT to reveal the future degradation trend and then predict the bearing RUL. Finally, the feasibility and generalization of the proposed method under limited data is validated by carrying out several rolling bearing experiments, and the prediction errors for two representative bearings are 14.46% and 8.06%.

Funder

national science and technology major project

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An intelligent hybrid deep learning model for rolling bearing remaining useful life prediction;Nondestructive Testing and Evaluation;2024-07-31

2. Online early warning method for motorized-spindle degradation without failure data;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2024-06-18

3. A Probabilistic Bayesian Transformer for Bearings Remaining Useful Life Prediction;2023 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS);2023-09-22

4. Remaining Useful Life Prediction via a Data-Driven Deep Learning Fusion Model-CALAP;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3