Analyze periodic inspection and replacement policy of a shock and wear model with phase-type inter-shock arrival times using roots method

Author:

Yu Miaomiao1ORCID,Tang Yinghui1

Affiliation:

1. School of Mathematical Sciences, Sichuan Normal University, Chengdu, Sichuan, China

Abstract

We consider a shock and wear model in which the inter-shock arrival process is a phase-type (PH) renewal process, and the system’s lifetime is generally distributed. The system has two competing failure modes. One failure mode is due to random shocks, which cause failure by overloading the system. The other failure mode is owning to wear-out failures, which usually happen after the system has run for many cycles. System failure is not self-announcing and remains undiscovered unless an inspection is performed. The intervals between successive inspections are identical and equal to T time units. If a system failure is detected, the corrective repair or replacement is conducted immediately. If the system is found working at inspection, preventive maintenance will be carried out to prolong its useful life. Furthermore, to model the occurrence of events with an underlying monotonic trend, the extended geometric process (EGP) is employed to account for the impact of different types of failures on the system’s degradation. Moreover, for establishing the cost rate function in our model, the counting process generated from a PH renewal shock process is studied in detail using the roots method and formula for calculating residues. Based on these results, the survival function and other characteristics of the system are further investigated. Finally, numerical examples that determine the optimal inspection period T[Formula: see text] and the optimal replacement policy N[Formula: see text], which minimizes the long-run average cost rate, are presented.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3