Affiliation:
1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an, People’s Republic of China
Abstract
Identifying the parameters that substantially affect the time-dependent reliability is critical for reliability-based design of motion mechanism. The time-dependent local reliability sensitivity and global reliability sensitivity are the two effective techniques for this type of analysis. This work extends the first-passage method and PHI2 method, which are commonly used for estimating the time-dependent reliability, for efficiently estimating the time-dependent local reliability sensitivity and global reliability sensitivity indices of the motion mechanism. Both the local reliability sensitivity and global reliability sensitivity indices are analytically derived based on the Poisson assumption–based first-passage method and the first-order Taylor’s expansion of the motion error function. Compared with the current envelope function method for estimating the time-dependent local reliability sensitivity and global reliability sensitivity indices, the developed method does not need to estimate the second-order derivatives of motion error function, thus is more applicable. The accuracy and effectiveness of the proposed method are demonstrated by a numerical example and a satellite antenna, the direction of which is controlled by a four-bar function generator mechanism.
Subject
Safety, Risk, Reliability and Quality
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献