Using LSTM neural network to predict remaining useful life of electrolytic capacitors in dynamic operating conditions

Author:

Forouzandeh Shahraki Ameneh1,Al-Dahidi Sameer2ORCID,Rahim Taleqani Ali3,Yadav Om Prakash14ORCID

Affiliation:

1. Department of Industrial & Manufacturing Engineering, North Dakota State University, Fargo, ND, USA

2. Department of Mechanical and Maintenance Engineering, German Jordanian University, Amman, Jordan

3. Department of Computer Science, North Dakota State University, Fargo, ND, USA

4. Department of Industrial and Systems Engineering, North Carolina A&T State University, Greensboro, NC, USA

Abstract

A critical aspect for prognostics and health management is the prediction of the remaining useful life (RUL). The existing RUL prediction techniques for aluminum electrolytic capacitors mostly assume the operating conditions remain constant for the entire prediction timeline. In practice, the electrolytic capacitors experience large variations in operating conditions during their lifetime that influence their degradation process and RUL. This paper proposes a RUL prediction method based on deep learning. The proposed framework uses the original condition monitoring and operating condition data without the necessity of assuming any particular type of degradation process and, therefore, avoiding the requirement of establishing link between model parameters and operating conditions. The proposed framework first identifies the degrading point and then develops the Long Short-Term Memory (LSTM) model to predict the RUL of capacitors. The LSTM-based method can reduce the computational time and complexity while ensuring high prediction performance. Its effectiveness is demonstrated by utilizing the simulated degradation process and temperature condition time-series of aluminum electrolytic capacitors used in electric vehicle powertrain.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3