Bayesian inference-based prognosis of fatigue damage for MPPO polymer using Zhurkov fatigue life model

Author:

Doh Jaehyeok1ORCID

Affiliation:

1. School of Mechanical and Material Convergence Engineering, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, Republic of Korea

Abstract

In this study, the fatigue damage prognosis of a modified polyphenylene oxide (MPPO) polymer is performed using a Bayesian framework, and a Zhurkov model-based dynamic fatigue life model is employed to obtain the probabilistic stress–cycle (P-S-N) curve. Activation energy and tensile tests are performed to determine the aleatory uncertainty of the lethargy coefficient of the Zhurkov fatigue life model. This uncertainty is quantified by performing sequential statistical modeling using experimental data with embedded scattering. The P-S-N curve is estimated using these data, and the Zhurkov fatigue life model is validated via the fatigue test. Furthermore, damage data are obtained via a low-cycle fatigue analysis in conditions identical to those of the fatigue test conducted on the specimen scale. Based on computational damage data, the initial model parameters of the fatigue damage model are obtained using the least-squares method. These model parameters are estimated while considering scattering by applying the Markov Chain Monte Carlo and particle filter. Therefore, the remaining useful life (RUL) of the MPPO, which depends on the amplitude stress, is predicted under the tension–tension fatigue loading ( R = 0), and the prediction accuracy of the RUL is evaluated using prognostics metrics.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3