Affiliation:
1. School of Reliability and Systems Engineering, Beihang University, Beijing, China
Abstract
Standby redundancy can meet system safety requirements in industries with high reliability standards. To evaluate reliability of standby systems, failure dependency among components has to be considered especially when systems have load-sharing characteristics. In this paper, a reliability analysis and state transfer scheduling optimization framework is proposed for the load-sharing 1-out-of- N: G system equipped with M warm standby components and subject to continuous degradation process. First, the system reliability function considering multiple dependent components is derived in a recursive way. Then, a Monte Carlo method is developed and the closed Newton-Cotes quadrature rule is invoked for the system reliability quantification. Besides, likelihood functions are constructed based on the measurement information to estimate the model parameters of both active and standby components, whose degradation paths are modeled by the step-wise drifted Wiener processes. Finally, the system state transfer scheduling is optimized by the genetic algorithm to maximize the system reliability at mission time. The proposed methodology and its effectiveness are illustrated through a case study referring to a simplified aircraft hydraulic system.
Funder
National Natural Science Foundation of China
Subject
Safety, Risk, Reliability and Quality
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献