RUL management by production reference loopback

Author:

Islam Shahin Kamrul1ORCID,Simon Christophe1ORCID,Weber Philippe1ORCID

Affiliation:

1. Université de Lorraine, CNRS, CRAN, Nancy, France

Abstract

Online remaining useful life (RUL) assessment is a significant asset in prognostic and health management (PHM) in many industrial domains where safety, reliability, and cost reduction are of high importance. It is not easy to predict the breakdown state of a system when it operates under multiple operating conditions, because system degradation varies with the dynamics of the operations. This paper presents an Input-Output Hidden Markov Model (IOHMM) that estimates the RUL in real time based on available measurements. The model learns the impact of the operating condition on the RUL and allows to manage the system RUL by changing the corresponding operating conditions. A reference managing algorithm is presented to match the estimated RUL to a given target RUL. In addition, well-known algorithms are adapted from HMM to IOHMM and are used for model training and health state diagnostics. A numerical application is proposed to show the importance of obtaining good predictions from a limited amount of data sequences. Specifically, since degradation is a slow process, it is difficult to have a large amount of data sequences in order to predict the RUL more accurately until the failure. Therefore, the bootstrap method with data resampling and replacement is used to train the IOHMM model to improve estimation accuracy.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3