Affiliation:
1. High-Tech Institute of Xi’an, Xi’an, PR China
2. School of Aero Engine, Zhengzhou University of Aeronautics, Zhengzhou, PR China
Abstract
Accurate remaining useful life (RUL) prediction is helpful to improve the reliability and safety of complex systems. However, in practical engineering applications, it often occurs imperfect or scarce prior degradation information for the degradation system with measurement error (ME). In order to solve this problem, based on the implicit linear Wiener degradation process, a RUL prediction method which reasonably fuses failure time data or multi-source information is proposed in this paper. Firstly, based on the implicit linear Wiener degradation process, we obtain the relationship between the natures of parameters estimation and degradation data by theoretical derivation, which provides a theoretical basis regarding how to fuse multi-source information. Secondly, according to the natures of parameters estimation, we use field degradation data and historical degradation data to estimate the fixed parameters of the two prediction cases respectively, and fuse failure time data into the degradation model by the expectation maximization (EM) algorithm. Then, the Kalman filtering algorithm is used to online update the drift parameter based on field degradation data. Finally, we use some simulation experiments to further verify the natures of parameters estimation, and two practical case studies to verify the superiority of the proposed method.
Subject
Safety, Risk, Reliability and Quality
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献