Semi-Markov processes with semi-regenerative states for the availability analysis of chemical process plants with storage units

Author:

Fink Olga1,Zio Enrico2

Affiliation:

1. Institute for Transportation Planning and Systems, ETH Zurich, Switzerland

2. Systems Science and the Energetic Challenge, European Foundation for New Energy-Electricité de France (EDF) at École Centrale Paris and SUPELEC, France; Department of Energy, Politecnico di Milano, Italy

Abstract

Design to capacity is an engineering principle that is increasingly applied in chemical industry, among others owing to increasing plant sizes and associated investments. This principle aims to reduce over-capacity, over-sized buffers and excessive redundancy. Concurrently, a high level of availability is targeted over the entire production chain. The consequences of unavailability of highly interconnected chemical process plants can be significant because a technical disruption in one plant is able to spread over the entire production network. In chemical process plants not only technical equipment determines the availability, but also storage units, which are able to bridge times of planned or unplanned interruptions of production. To find a balance between the principle of design to capacity and high production availability, the influence of different design parameters, such as capacity of production units, redundancy concept and the size of storage units, have to be evaluated and integrated in the design process. In this article, we present an analytical method for availability evaluation based on extending Semi-Markov processes integrating storage units and multiple production lines. Semi-regenerative states are used to capture the characteristics of storage units, and an approach is proposed in this work to assign distributions for the remaining holding times in these states. The proposed modelling and analysis are demonstrated on two case studies.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3