An artificial immune intelligent maintenance system for distributed industrial environments

Author:

Fasanotti Luca1,Cavalieri Sergio2,Dovere Emanuele2,Gaiardelli Paolo2ORCID,Pereira Carlos E3

Affiliation:

1. Consorzio Intellimech, Bergamo, Italy

2. Department of Management, Information and Production Engineering, University of Bergamo, Bergamo, Italy

3. Grupo de Controle, Automação e Robótica (GCAR), Departamento de Engenharia Elétrica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Abstract

Maintenance services of geographically dispersed industrial applications, such as oil transfer systems via pipelines and wastewater treatment plants, are affected by high logistics costs and risks of permanent downtimes. The increasing availability of smart technologies and devices has led to the introduction of advanced prognostic and diagnostic systems to support maintenance activities. In this context, artificial immune systems support the development of industrial applications, where machines and equipment are capable of self-repairing, healing and learning due to their ability to learn from experience. However, the applicability of artificial immune systems has a limited set of contexts along with a low incidence of real-word implementations in the literature, and thus, additional explorative studies are necessary. This article describes a proposed hybrid system conceived by integrating a multi-agent system–based architecture with the main features of artificial immune systems and evaluates its potential applications in two different industrial settings. The flexibility of the behaviour of artificial immune systems methodologies allows for the implementation of a reliable diagnostic and prognostic system, while the choice of multi-agent system architecture enables a mix of autonomy and distributed processing that overcomes the strong limitations of a reduced training dataset.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biologically Inspired Unified Artificial Immune System for Industrial Equipment Diagnostic;Machine Learning, Optimization, and Data Science;2023

2. Deep learning health state prognostics of physical assets in the Oil and Gas industry;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2020-12-07

3. Multi-agent system architectures for collaborative prognostics;Journal of Intelligent Manufacturing;2019-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3